Neural Networks Retraining for Unsupervised Video Object Segmentation of Videoconference Sequences

نویسندگان

  • Klimis S. Ntalianis
  • Nikolaos D. Doulamis
  • Anastasios D. Doulamis
  • Stefanos D. Kollias
چکیده

In this paper efficient performance generalization of neural network classifiers is accomplished, for unsupervised video object segmentation in videoconference/videophone sequences. Each time conditions change, a retraining phase is activated and the neural network classifier is adapted to the new environment. During retraining both the former and current knowledge are utilized so that good network generalization is achieved. The retraining algorithm results in the minimization of a convex function subject to linear constraints, leading to very fast network weight adaptation. Current knowledge is unsupervisedly extracted using a face-body detector, based on Gaussian p.d.f models. A binary template matching technique is also incorporated, which imposes shape constraints to candidate face regions. Finally the retrained network performs video object segmentation to the new environment. Several experiments on real sequences indicate the promising performance of the proposed adaptive neural network as efficient video object segmentation tool.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Stereoscopic Video Object Segmentation Based on Active Contours and Retrainable Neural Networks

In this paper an unsupervised scheme for stereoscopic video object extraction is presented based on a neural network classifier. More particularly, the procedure includes: (A) A retraining algorithm for adapting neural network weights to current conditions and (B) An active contour module, which extracts the retraining set. The retraining algorithm takes into consideration both the former and t...

متن کامل

Video object segmentation and tracking in stereo sequences using adaptable neural networks

SEQUENCES USING ADAPTABLE NEURAL NETWORKS Nikolaos Doulamis and Anastasios Doulamis National Technical University of Athens, Electrical and Computer Engineering Department, 15773, Athens, Greece E-mail: [email protected] Abstract In this paper, an adaptive neural network architecture is proposed for efficient video object segmentation and tracking of stereoscopic sequences. The scheme includes...

متن کامل

An efficient fully unsupervised video object segmentation scheme using an adaptive neural-network classifier architecture

In this paper, an unsupervised video object (VO) segmentation and tracking algorithm is proposed based on an adaptable neural-network architecture. The proposed scheme comprises: 1) a VO tracking module and 2) an initial VO estimation module. Object tracking is handled as a classification problem and implemented through an adaptive network classifier, which provides better results compared to c...

متن کامل

Instance Embedding Transfer to Unsupervised Video Object Segmentation

We propose a method for unsupervised video object segmentation by transferring the knowledge encapsulated in image-based instance embedding networks. The instance embedding network produces an embedding vector for each pixel that enables identifying all pixels belonging to the same object. Though trained on static images, the instance embeddings are stable over consecutive video frames, which a...

متن کامل

A Neural Network based Scheme for Unsupervised Video Object Segmentation

In this paper, we proposed a neural network based scheme for performing unsupervised video object segmentation, especially for videophone or videoconferencing applications. The procedure includes (a) a training algorithm for adapting the network weights to the current condition, (b) a Maximum A Posteriori (MAP) estimation procedure for optimally selecting the most representative data of the cur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002